第15章(1 / 1)

这令人惊奇的事实导致罗杰·彭罗斯提出了宇宙监督猜测,它可以被意译为:“上帝憎恶裸奇点。”换言之,由引力坍缩所产生的奇点只能发生在像黑洞这样的地方,在那儿它被事件视界体面地遮住而不被外界看见。严格地讲,这是所谓弱的宇宙监督猜测:它使留在黑洞外面的观察者不致受到发生在奇点处的可预见性失效的影响,但它对那位不幸落到黑洞里的可怜的航天员却是爱莫能助。

广义相对论方程存在一些解,这些解使得我们的航天员可能看到裸奇点。他也许能避免撞到奇点上去,而穿过一个“虫洞”来到宇宙的另一区域。看来这给空间——时间内的旅行提供了巨大的可能性。但是不幸的是,所有这些解似乎都是非常不稳定的;最小的干扰,譬如一个航天员的存在就会使之改变,以至于他还没能看到此奇点,就撞上去而结束了他的时间。换言之,奇点总是发生在他的将来,而从不会在过去。强的宇宙监督猜测是说,在一个现实的解里,奇点总是或者整个存在于将来(如引力坍缩的奇点),或者整个存在于过去(如大爆炸)。因为在接近裸奇点处可能旅行到过去,所以宇宙监督猜测的某种形式的成立是大有希望的。这对科学幻想作家而言是不错的,它表明没有任何一个人的生命曾经平安无事:有人可以回到过去,在你投胎之前杀死你的父亲或母亲!

事件视界,也就是空间——时间中不可逃逸区域的边界,正如同围绕着黑洞的单向膜:物体,譬如不谨慎的航天员,能通过事件视界落到黑洞里去,但是没有任何东西可以通过事件视界而逃离黑洞。(记住事件视界是企图逃离黑洞的光的空间——时间轨道,没有任何东西可以比光运动得更快。)人们可以将诗人但丁针对地狱入口所说的话恰到好处地用于事件视界:“从这儿进去的人必须抛弃一切希望。”任何东西或任何人一旦进入事件视界,就会很快地到达无限致密的区域和时间的终点。

广义相对论预言,运动的重物会导致引力波的辐射,那是以光的速度传播的空间——时间曲率的涟漪。引力波和电磁场的涟漪光波相类似,但是要探测到它则困难得多。就像光一样,它带走了发射它们的物体的能量。因为任何运动中的能量都会被引力波的辐射所带走,所以可以预料,一个大质量物体的系统最终会趋向于一种不变的状态。(这和扔一块软木到水中的情况相当类似,起先翻上翻下折腾了好一阵,但是当涟漪将其能量带走,就使它最终平静下来。)例如,绕着太阳公转的地球即产生引力波。其能量损失的效应将改变地球的轨道,使之逐渐越来越接近太阳,最后撞到太阳上,以这种方式归于最终不变的状态。在地球和太阳的情形下能量损失率非常小——大约只能点燃一个小电热器,这意味着要用大约1干亿亿亿年地球才会和太阳相撞,没有必要立即去为之担忧!地球轨道改变的过程极其缓慢,以至于根本观测不到。但几年以前,在称为psr1913+16(psr表示“脉冲星”,一种特别的发射出无线电波规则脉冲的中子星)的系统中观测到这一效应。此系统包含两个互相围绕着运动的中子星,由于引力波辐射,它们的能量损失,使之相互以螺旋线轨道靠近。j·h·泰勒和r·a·荷尔西由于对广义相对论的这一证实,而获得1993年的诺贝尔奖。大约3亿年后它们将会碰撞。它们在碰撞之前,将会公转得这么快速,甚至像ligo这样的检测器却能接收到它们射出的引力波。

在恒星引力坍缩形成黑洞时,运动会更快得多,这样能量被带走的速率就高得多。所以不用太长的时间就会达到不变的状态。这最终的状态将会是怎样的呢?人们会以为它将依赖于形成黑洞的恒星的所有的复杂特征——不仅仅它的质量和转动速度,而且恒星不同部分的不同密度以及恒星内气体的复杂运动。如果黑洞就像坍缩形成它们的原先物体那样变化多端,一般来讲,对之作任何预言都将是非常困难的。

然而,加拿大科学家外奈·伊斯雷尔(他生于柏林,在南非长大,在爱尔兰得到博士)在1967年使黑洞研究发生了彻底的改变。他指出,根据广义相对论,非旋转的黑洞必须是非常简单、完美的球形;其大小只依赖于它们的质量,并且任何两个这样的同质量的黑洞必须是等同的。事实上,它们可以用爱因斯坦的特解来描述,这个解是在广义相对论发现后不久的1917年卡尔·施瓦兹席尔德找到的。一开始,许多人(其中包括伊斯雷尔自己)认为,既然黑洞必须是完美的球形,一个黑洞只能由一个完美球形物体坍缩而形成。所以,任何实际的恒星——从来都不是完美的球形——只会坍缩形成一个裸奇点。

然而,对于伊斯雷尔的结果,一些人,特别是罗杰·彭罗斯和约翰·惠勒提倡一种不同的解释。他们论证道,牵涉恒星坍缩的快速运动表明,其释放出来的引力波使之越来越近于球形,到它终于静态时,就变成准确的球形。按照这种观点,任何非旋转恒星,不管其形状和内部结构如何复杂,在引力坍缩之后都将终结于一个完美的球形黑洞,其大小只依赖于它的质量。这种观点得到进一步的计算支持,并且很快就为大家所接受。

伊斯雷尔的结果只处理了由非旋转物体形成的黑洞。1963年,新西兰人罗伊·克尔找到了广义相对论方程的描述旋转黑洞的一族解。这些“克尔”黑洞以恒常速度旋转,其大小与形状只依赖于它们的质量和旋转的速度。如果旋转为零,黑洞就是完美的球形,这解就和施瓦兹席尔德解一样。如果有旋转,黑洞的赤道附近就鼓出去(正如地球或太阳由于旋转而鼓出去一样),而旋转得越快则鼓得越多。由此人们猜测,如将伊斯雷尔的结果推广到包括旋转体的情形,则任何旋转物体坍缩形成黑洞后,将最后终结于由克尔解描述的一个静态。

1970年,我在剑桥的一位同事和研究生同学布兰登·卡特为证明此猜测跨出了第一步。他指出,假定一个稳态的旋转黑洞,正如一个自旋的陀螺那样,有一个对称轴,则它的大小和形状,只由它的质量和旋转速度所决定。然后我在1971年证明了,任何稳态旋转黑洞确实有这样的一个对称轴。最后,在国王学院任教的大卫·罗宾逊利用卡特和我的结果证明了这猜测是对的:这样的黑洞确实必须是克尔解。所以在引力坍缩之后,一个黑洞必须最终演变成一种能够旋转、但是不能搏动的态。并且它的大小和形状,只决定于它的质量和旋转速度,而与坍缩成为黑洞的原先物体的性质无关。此结果以这样的一句谚语表达而成为众所周知:“黑洞没有毛。”“无毛”定理具有巨大的实际重要性,因为它极大地限制了黑洞的可能类型。所以,人们可以制造可能包含黑洞的物体的具体模型,再将此模型的预言和观测相比较。因为在黑洞形成之后,我们所能测量的只是有关坍缩物体的质量和旋转速度,所以“无毛”定理还意味着,有关这物体的非常大量的信息,在黑洞形成时损失了。下一章我们将会看到它的意义。

黑洞是科学史上极为罕见的情形之一,在没有任何观测到的证据证明其理论是正确的情形下,作为数学的模型被发展到非常详尽的地步。的确,这经常是反对黑洞的主要论据:你怎么能相信一个其依据只是基于令人怀疑的广义相对论的计算的对象呢?然而,1963年,加利福尼亚的帕罗玛天文台的天文学家马丁·施密特测量了在称为3c273(即是剑桥射电源编目第三类的273号)射电源方向的一个黯淡的类星体的红移。他发现引力场不可能引起这么大的红移——如果它是引力红移,这类星体必须具有如此大的质量,并离我们如此之近,以至于会干扰太阳系中的行星轨道。这暗示此红移是由宇宙的膨胀引起的,进而表明此物体离我们非常远。由于在这么远的距离还能被观察到,它必须非常亮,也就是必须辐射出大量的能量。人们会想到,产生这么大量能量的唯一机制看来不仅仅是一个恒星,而是一个星系的整个中心区域的引力坍缩。人们还发现了许多其他类星体,它们都有很大的红移。但是它们都离开我们太远了,所以对之进行观察太困难,以至于不能给黑洞提供结论性的证据。

1967年,剑桥的一位研究生约瑟琳·贝尔发现了天空发射出无线电波的规则脉冲的物体,这对黑洞的存在的预言带来了进一步的鼓舞。起初贝尔和她的导师安东尼·赫维许以为,他们可能和我们星系中的外星文明进行了接触!我的确记得在宣布他们发现的讨论会上,他们将这四个最早发现的源称为lgm1-lgm4,lgm表示“小绿人”(“littlegreenman”)的意思。然而,最终他们和所有其他人都得到了不太浪漫的结论,这些被称为脉冲星的物体,事实上是旋转的中子星,这些中子星由于它们的磁场和周围物质复杂的相互作用,而发出无线电波的脉冲。这对于写空间探险的作者而言是个坏消息,但对于我们这些当时相信黑洞的少数人来说,是非常大的希望——这是第一个中子星存在的证据。中子星的半径大约10英里,只是恒星变成黑洞的临界半径的几倍。如果一颗恒星能坍缩到这么小的尺度,预料其他恒星会坍缩到更小的尺度而成为黑洞,就是理所当然的了。

www.。m.

最新小说: 洛河鬼书 草清 大师兄太稳健了 重生1991 九全十美 我被大佬追着跑 大明超级奶爸 巫祭 华山武圣 九天龙帝